Gröbner bases in universal enveloping algebras of Leibniz algebras
نویسندگان
چکیده
منابع مشابه
Universal enveloping algebras of Leibniz algebras and (co)homology
The homology of Lie algebras is closely related to the cyclic homology of associative algebras [LQ]. In [L] the first author constructed a "noncommutative" analog of Lie algebra homology which is, similarly, related to Hochschild homology [C, L]. For a Lie algebra g this new theory is the homology of the complex C,(g) ... ~ ~| g|-+ ... ~1 ~ k, whose boundary map d is given by the formula d(gl|1...
متن کاملColoured quantum universal enveloping algebras
We define some new algebraic structures, termed coloured Hopf algebras, by combining the coalgebra structures and antipodes of a standard Hopf algebra set H, corresponding to some parameter set Q, with the transformations of an algebra isomorphism group G, herein called colour group. Such transformations are labelled by some colour parameters, taking values in a colour set C. We show that vario...
متن کاملStandard Lyndon bases of Lie algebras and enveloping algebras
It is well known that the standard bracketings of Lyndon words in an alphabet A form a basis for the free Lie algebra Lie(A) generated by A . Suppose that g 2 Lie(A)/J is a Lie algebra given by a generating set A and a Lie ideal J of relations. Using a Grobner basis type approach we define a set of "standard" Lyndon words, a subset of the set Lyndon words, such that the standard bracketings of ...
متن کاملThe Isomorphism Problem for Universal Enveloping Algebras of Lie Algebras
Let L be a Lie algebra with universal enveloping algebra U(L). We prove that if H is another Lie algebra with the property that U(L) ∼= U(H) then certain invariants of L are inherited by H. For example, we prove that if L is nilpotent then H is nilpotent with the same class as L. We also prove that if L is nilpotent of class at most two then L is isomorphic to H.
متن کاملConstructing Canonical Bases of Quantized Enveloping Algebras
Since the invention of canonical bases of quantized enveloping algebras, one of the main problems has been to establish what they look like. Explicit formulas are only known in a few cases corresponding to root systems of low rank, namely A1 (trivial), A2 ([Lusztig 90]), A3 ([Xi 99a]), and B2 ([Xi 99b]). Furthermore, there is evidence suggesting that for higher ranks the formulas become so comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2009
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2007.07.020